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Abstract 

We review the construction of the multiparametric quantum group ISO,,, as a projection from 
SO,,,(N + 2) and show that it is a bicovariant bimodule over SO,,,(N). The universal enveloping 
algebra Z/,,,(iso(N)), characterized as the Hopf algebra of regular functionals on GO,,,(N), is 
found as a Hopf subalgebra of U,,,(so(N + 2)) and is shown to be a bicovariant bimodule over 

U,,,-MN)). 
An R-matrix formulation of C/,,,(iso(N)) is given and we prove the pairing C/,,,.(iso(N)) * 

ISO,.,-( We analyze the subspaces of U,,, (iso( N)) that define bicovariant differential calculi 
on ISO,,,( 
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1. Introduction 

A noncommutative space-time, with a deformed Poincare symmetry group, is an inter- 
esting geometric background for the study of Minkowski space-time physics and, in partic- 
ular, of Einstein-Cartan gravity theories [9,7]. In this perspective it is natural to investigate 
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inhomogeneous orthogonal quantum groups, their quantum Lie algebras and more generally 
their differential structure. 

In this paper we review the multiparametric R-matrix formulation of ISO,,, as a 
projection from SO,,,(N + 2) [4] emphasizing the analogy with the classical construction. 
We also show that ISO,,, is a bicovariant bimodule over SO,_,(N), freely generated 
by the translation elements x“ plus the dilatation element associated to ZSO,,, (N). We 
then construct and analyze the universal enveloping algebra Uy,,(sn(N + 2)), defined as 
the algebra of regular functionals [ 1 l] on the multiparametric homogeneous orthogonal q- 
groups. The projection procedure SO,,, (N+2) + ISO,,, (N), initiated in [6] anddeveloped 
in [7,2,4], is here exploited to obtain lJ,,,(iso(N)) as a particular Hopf subalgebra of 
U,,,(so(N +2)), and prove that it is paired toZSO,.,(N). A detailed study of Uq.,(iso(N)) 
and an R-matrix formulatiotl IS given. In complete analogy with the ISO,,, case we 
also prove that U,,,(iso(N)) is a bicovariant bimodule over U,,,(so(N)) and give a basis 
of right invariant elements that freely generate U,,,(iso(N)). The universal enveloping 
algebras of the inhomogeneous quantum groups I G L,,, (N), first studied with a different 
approach in [ 161, can be derived in a similar way. 

The quantum Lie algebras of ZSO,,,(N) are subspaces (adjoint submodules) of 
U,,,(iso(N)), and in the last section we examine two of them, obtained as “projections” 
from the quantum Lie algebras of SO,,, (N + 2). The two associated bicovariant differen- 
tial calculi are also briefly presented. The first has N + 2 generators, and is an interesting 
candidate for a differential calculus on the quantum orthogonal plane in dimension N. The 
second is obtained with the parametric restriction r = 1; in the classical limit Y = q = 1 it 
reduces to the differential calculus on the undeformed ISO( N). This section does not rely 
on the technical parts of Sections 4 and 5; these may be skipped by the reader interested 
mainly in the differential calculi on ISO,,, (N). 

In this article, all the properties of the quantum inhomogeneous ISO,,, group, its 
universal enveloping algebra and its differential calculus are derived from the known prop- 
erties of the homogeneous “parent” structure. The main logical steps of this derivation are 
independent from the q-group considered, and the projection procedure may be applied to 
investigate more general quotients of the A, B, C, D q-groups, as for example deformed 
parabolic groups. 

2. SO,,,(N) multiparametric quantum group 

The SO,,,(N) multiparametric quantum group is freely generated by the noncommuting 
matrix elements Tub (fundamental representation a, b = 1, , N) and the unit element I, 
modulo the relation dety,r T = I and the quadratic R T T and CT T (orthogonality) relations 
discussed below. The noncommutativity is controlled by the R-matrix 

R “h,fT’cT{ = TbfTaeRefcd, (2.1) 

which satisfies the quantum Yang-Baxter equation 
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a sufficient condition for the consistency of the “RTT” relations (2.1). The R-matrix com- 
ponents Rubcd depend continuously on a (in general complex) set of parameters q&, r. For 
q&, = r we recover the uniparametric orthogonal group SO,(N) of [ 111. Then q& + 
1, r + 1 is the classical limit for which Rcibcd -+ SgS$ : the matrix entries TO,, commute 
and become the usual entries of the fundamental representation. The multiparametric R- 
matrices for the A, B, C, D series can be found in [ 151 (other reference on multiparametric 
q-groups are given in [ 14,181). For the orthogonal case they read (we use the same notations 
of [4]): 

R”bc.d = S,4SI; t + (r - lpab + (8 - l)@ 1 (1 - P”2) + L3~&S;28;~ 

+ (r - r-’ )[(p@jf; - eU’.rP~r-P~8cJ’b~,,d], (2.3) 

where Pb = 1 for n > h and 0” = 0 for n 5 b; we define 112 = (N + 1)/2 and primed 
indices as a’ E N + 1 - a. The terms with the index n? are present only in the B,, case: 
N = 2n + 1. The pa vector is given by 

’ N 

( 
--1.;-2 ,.... f:o,-; . . . . . -;+1 
2 1 

(PI*...,PN)= I 
for B,[S0(2n + l)], 

( 

N 
--1.;-2 ,.... 1,0,0,-l ).... -;,I 

> 

(2.4) 

2 
\ for D,,[S0(2n)]. 

Moreover, the following relations reduce the number of independent q& parameters [ 1.51: 

rL 
q (,(I = r, qba = -5 

4ab 
(2.5) 

t-2 t-2 
‘lub = 4uh’ = q~llh = qa’b’, (2.6) 

where (2.6) also implies q,,’ = r. Therefore the q& with a -c b 5 N/2 give all the q’s, 
It is useful to list the nonzero complex components of the R-matrix (no sum on repeated 

indices): 

R ub r 
oh=-> a # b, a’ # b, 

‘?a6 
(2.7) 

R czb -I bu=r-r , a > b, a’ # b, 

R an’ n,a = (r - r-‘)(l - rpa-pJ), a > a’, 

R MI’ bb, = -(r - rp’)rpupph, a > b, a’ # b. 
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Remark 2.1. The matrix R is upper triangular (i.e. Rahcd = 0 if [u = c and b -c d] or 
a < c) and has the following properties: 

R-’ = R,~I,,-I, Y.’ (Rq.r)%i = (Rq.rfd’uw (Rq,r)“cd = (RpJdc/m (2.8) 

where q, r denote the set of parameters qab. r, and pab = L&n. 

The inverse R-’ is defined by (Rp’)nbcdRcdff = SzSF = R“bcd(Rp’)“def. The first 

equation in (2.8) implies that for 191 = IrI = 1, R = R-l. 

Remark 2.2. The characteristic equation and the projector decomposition of kcI,‘, where 
kUbcd EE Rba cd, are the same as in the uniparametric case [ 14,4]; in particular the projectors 
read: 

Ps = I - (r-1 + r’-N)P& 

PA = +-+-li + rl - (Y - +yP()], (2.9) 

PO = (C,&“‘)-‘K, where Kabcd = C”k,,& 

Orthogonality conditions are imposed on the elements Tub, consistently with the RT T 
relations (2.1): 

Ch’T” Td, = CUdI 
b c C,,T’,T’; = CbdI, (2.10) 

where the (antidiagonal) metric is 

C nb = rPP1’g ah’ (2.1 I) 

and its inverse Cub satisfies C”bCbc. = S,? = C&C”. We see that the matrix elements of 
the metric and the inverse metric coincide, C“’ = Cat,; notice also the symmetry C,t, = 
Ch’fl’. 

The consistency of (2.10) with the R T T relations is due to the identities 

C&JPd<> = (k’)~f~dc,fe, (2.12) 

ibcdeCw = @f &lyud. (2.13) 

These identities hold also for k + k1 and can be proved using the explicit expression 
(2.7) of R. We also note the useful relations 

CNbkabcd = rlpNCcd, Ccd+bcd = r’pNCab (2.14) 

and 

R”” cc< = C+zc~l, RNL(,d = & Ccd for a > c. (2.15) 
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The costructures of the orthogonal multiparametric quantum group have the same form as 
in the uniparametric case: the coproduct A, the counit E and the coinverse K are given by 

A(T’,,) = Tab @I T’,, (2.16) 

&(Tab) = S;, (2.17) 

K(T~~) = CaCTd&,. (2.18) 

In order to define the quantum determinant det,,, T we introduce the orthogonal N- 
dimensional quantum plane of coordinates xa that satisfy the q-commutation relations 
PAahCdx’.xd = 0. We then consider the algebra of exterior forms dx ’ , dx*, . . . , dxN 
defined by PSahCd dx” dx d = 0 and PuabCd dx”dx d = 0, i.e. (use (2.9)) dx” dxh = 
---)_RhaCd dx” dxd. There is a natural action 6 of the orthogonal quantum group on the 
exterior algebra (that becomes a left comodule): 

6(dx”) = T’, @ dx”, G(dx’ dxh.. dx”) = TadT”,-T;@ dxddxe... dxj. 

Generalizing the results of [ 121 to the multiparametric case, we find that any N-dimensional 
form is proportional to the volume form dV 3 dx’ . . . dxN, so that the determinant is 
uniquely defined by 

6(dV) = det,.,T @ dV. (2.19) 

Using (2.10) as in [ 121 it is immediate to prove that (det,,,T)* = I; moreover det,., T is 
central and satisfies A(det,.,T) = det,.,T @ det,,,T. 

To obtain the special orthogonal quantum group SO,,,(N) we impose also the relation 
det,,,T = I. 

Remark 2.3. Using formula (2.3) or (2.7),we find that the RA& matrix for the SO,,, (N + 
2) quantum group can be decomposed in terms of SO,,,(N) quantities as follows (splitting 
the index A as A = (0, a, ??), with a = 1, . . . N): 

RAB CD 

00 00 

00 r 00 0 ro1 

00 0 .f G-1 
00 0 0 

ob 0 0 

??b 0 0 

a0 0 0 

a0 0 0 

ab 0 -Chahr- 

??o ??e od ??d CO 

000 0 0 

000 0 0 

r-l 0 0 0 0 

Or0 0 0 

0 OL,: 0 0 

qoh 

00 0 -25; 0 

qeb 

0 0 Id; 0 2; 
quo 

000 0 0 

-poo 0 0 0 

CO 

0 
0 
0 
0 

0 

0 

I-8; 
4a. 
0 

cd 
0 
0 

-ccdhr-P 
0 

0 

\ 

0 

0 

0 

R ab 
cd 1 

(2.20) 
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where Rabcd is the R-matrix for SO,,,(N), Cab is the corresponding metric, k = r - r-’ , 
p = (N/2) (rP = C.,) and f(r) = h(1 - re2p). 

3. ISO,,, (N) as a projection from SO,., (N + 2) 

Classically the orthogonal group S 0 (N + 2) is defined as the set of all linear transforma- 
tions with unit determinant which preserve the quadratic form (z’)~ + (z’)~ +. . . + (z!+lj2 
or equivalently, since we are in the complex plane, the quadratic form z,‘z~+~ + z ’ z N f. . . + 
zN+’ z” (use the transformation zA + (z*+iz,*‘)/&forA 5 N/2; z* + (z*‘-izAj/l/Z 
for A > N/2; zA unchanged for A = A’). The associated metric is therefore CAB = 8AB’ 
whereA,B=O.l,..., N+landB’=N+l-B. 

We consider the ZSO( N) subgroup of SO(N + 2) defined as follows. Select the subset 
of matrices in S 0 (N + 2) whose components T* 8 read 

T“, = T*,, = T’, = 0. (3.1) 

The product of two such SO(N + 2) matrices gives a SO(N + 2) matrix with the same 
structure: 

ii i:;;.) = (‘“‘r’ ,:(T’ Tj;,am). 

(3.2) 

where x’ = T’ - ., yu E T”,, z E TO,, x” = XT’*, + TX’ and y” = T”,y’ + yT’. These 
matrices form a subgroup of SO (N + 2). If we further set T “, = T’, = 1 this subgroup 
becomes ZSO(N). 

Conditions (3.1) and TAB E SO(N + 2) (i.e. TABC*cT cD = Csn , det TAB = 1) are 
equivalent to 

TuO = Tab = T’, = 0, (3.3) 

TabC,,Tcd = C&i, detTab = 1, (3.4) 

T” = -T” C .T” To h b fl< . 0’ T@, = -~T~,C~~~T~~.TO,, T”, = (T’J’. (3.5) 

As expected, there are no constraints on xc = T“.. 

Remark 3.1. Classically there is an easier way to recover ZSO(N), namely starting from 
SO(N + 1). In the quantum case the R-matrix of SO,,,(N) is only contained in SO,,,(N + 
2), see Remark 2.3. This explains why we have considered this bigger group. 

Since ISO( N) is a subgroup of S 0 (N + 2) the algebra Fu~(ZSO( N)) of regular functions 
from Z S 0 (N) to @ will be obtained from Fun (SO (N + 2)) as a quotient, whose canonical 
projection we name P. Let us now consider the elements TAG asfunctions on the S 0 (N +2) 



I? Aschieri, L. Castellani/Joournal of Geomety and Physics 26 (1998) 247-271 253 

group manifold: they define the fundamental representation of SO(N + 2). Since Vg E 
ZSO(N), PO(g) = Tab(g) = T*,(g) = 0, we can write 

Fun(ISO(N)) = 
Fun(SO(N + 2)) 

H ’ 
(3.6) 

where Fun( SO(N + 2)) is generated by TAB and H is the left and right ideal generated 
by the functions T’, : Teb ; T’, . Therefore Fun(ZSO(N)) is generated by the func- 
tions P (T A B) where P is the canonical projection associated to H : P (T’J = P ( T*b) = 
P(T’,) = 0; more explicitly it is generated by the elements TAG modulo the relations 
(3.3)-(3.5). 

The above construction can be carried over to the quantum group level. In this case the 
elements TAG are abstract generators of SO,,,(N + 2) = Fun,.,(SO(N + 2)) and we have 
ISO,,, E Funy,,(ISO(N)) = SO,.,(N + 2)/H because the ideal H is a Hopf ideal 
i.e. 

(i) H is a two-sided ideal in S,,,(N + 2), 
(ii) H is a co-ideal, i.e. 

AN+z(H) c H @SO,,,@’ + 2) + SO,,,(N + 2) @ H, e,j~+~(H) = 0, 

(3.7) 

(iii) H is compatible with KN+Z: 

KN+z(H) s ff> (3.8) 

where the suffix N + 2 refers to the costructures of SO,,,(N + 2). It should be clear 
that ISO,., is not a subalgebra, nor a Hopf subalgebra of SO,,,(N + 2); that is why 
we distinguish with a suffix between the costructures of ISO,,, and of SO,%, (N + 

2). 
Following [4] the projection P: SO,,,(N + 2) + SO,,,(N + 2)/H is a Hopf algebra 

epimorphism, and defining the projected matrix elements tAB = P(TAB), where TAB are 
the SO,,, (N + 2) generators, we have: 

Theorem 3.1. The quuntum group ISO,,, is generated by the matrix entries 

P(T”) P(Y) P(z) 
t- 0 f’V,J P(x) and the unity I (3.9) 

0 0 P(T’.) 

modulo the "Rtt ” and “Ctt ” relations 

RAB,,tEctFD = tBFtAEREF,, > (3.10) 

cBCtABtDc = CAD, cActABtCD = CBD. (3.1 I) 

where R and C are the multiparametric R-matrix and metric of SO,., (N + 2), respectively. 
The costructures are the same as in (2.16)-(2.18), with tAB instead of Tub. 
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Relations (3.10) and (3.11) explicitly read: 

Th d Xa = :Rah f efxeT d' 
4de 

P;bcdXcXd = 0, 

Th 
d 

,,, = euTh 
qdm d’ 

Xbv = ‘&UXh, 
uv = vu = I, 

1(X’ = ‘&X’LL, 

uThd = 9”Tbdu, 
4d* 

yh = -rPTobCacxCu, 

1 

z = - (r_N,2 + rN,2_2)xbCb~{xau~ 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

where we have set P(T”,) = u, P(T’,) = v and, with abuse of notations, T’6 = 
P(TUb), x = P(x) y = P(y), z = P(z), and where qu. are N complex parameters related 
byq,. = r2/q,g. . with a’ = N + 1 --a. The matrix PA in Eq. (3.16) is the q-antisymmetrizer 
for the orthogonal quantum group, see (2.9).The last two relations (3.22) and (3.23) are con- 
straints, showing that the tAp, matrix elements are really a redundant set. This redundance is 
necessary if we want an R-matrix formulation giving the q-commutations of the ISO,,, (N) 
generators. Remark that, in the R-matrix formulation for ZGL,,,(N), all the tAB are inde- 
pendent [6,2]. Here we can take as independent generators the elements 

Tab, xa, v, u = u-l and the identity I (a = 1, . N). (3.24) 

In the commutative limit q -+ 1. r + 1 we recover the algebra Fun( I SO (N)) described 
in (3.6). 

Note 3.1. From the commutations (3.20) and (3.21) we see that we can set u = I only 
when qn. = 1 for all a. From qo. = r2/qUl., cf. Eq. (2.6), this implies also r = 1. 

Note 3.2. Eqs. (3.16) are the multiparametric orthogonal quantum plane commutations. 
They follow from the (a.b.) Rtt components and (3.23). 

Note 3.3. The u. u = u-’ and xa elements generate a subalgebra of ISO,., because 
their commutation relations do not involve the Tub elements. Moreover these elements can 
be ordered using (3.16) and (3.20), and the PoincarC series of this subalgebra is the same 
as that of the commutative algebra in the N + 1 symbols u, xa [ 1 I]. A linear basis of this 
subalgebra is therefore given by the ordered monomials 5’ = u~~(x’)~~ . . . (xN)‘N with 
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i, E Z, il, . iN E N U (0). Then, using (3.15) and (3.21), a generic element of ISO,,, 
can be written as [‘ai where ai E SO,,,(N) and we conclude that ISO,,, is a right 
SO,,, (N)-module generated by the ordered monomials <’ . 

One can show that as in the classical case the expressions <‘ai are unique: ciai = 0 =+ 
u, = 0 Vi, i.e. that ISO,,,. (N) is a free right Soy,,(N)-module; moreover (at least when 

9 a. = Y Vu) ISO,,, is a bicovariant bimodule over SO,,,(N). The proofs of these 
statements follow the same steps as those given after Note 5.4, and are left to the reader. 
Similarly, writing a;<’ instead of {‘ai, we have that ISO,,, is the free left SO,,,(N)- 
module generated by the I’. 

4. Universal enveloping algebra u,,,(so(N + 2)) 

We construct the universal enveloping algebra U,,, (so( N + 2)) of SO,,, (N + 2) as the 
algebra of regular functionals [ 1 l] on SO,,,(N + 2). 

It is the algebra over C generated by the counit E and by the functionals L* defined by 
their value on the matrix elements TAB : 

L*;(Tg = (R*pC,,, (4.1) 

L*%(r) = SB” (4.2) 

with 

(R+)AC,, = RCA,,, (R-)A$D = (R-‘)AC,,. (4.3) 

To extend the definition (4.1) to the whole algebra SO,.,(N + 2) we set 

L*A,(uh) = L*A,(u)L*$(b) Vu, b E SO,,,(N + 2). (4.4) 

From (4. l), using the upper and lower triangularity of Rf and R-, we see that L+ is upper 
triangular and L- is lower triangular. 

The commutations between L&i and L*% are induced by (2.2): 

R,2LfL; = LfL;R,2, (4.5) 

R,2L;L; = L;L;R12, (4.6) 

where as usual the product LtLT is the convolution product Lf Lf = (Lt @ Lf)A. 
The L*$ elements satisfy orthogonality conditions analogous to (2.10): 

CABL+C L+D 
B A = CDCE, 

CABL 
+B +A 

CL D = CDCE, 

(4.7) 

(4.8) 

as can be verified by applying them to the q-group generators and using (2.12) and (2.13). 
They provide the inverse for the matrix L* 

[(L*)-‘lAB = CDAL+$CBC. (4.9) 
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The costructures of the algebra generated by the functionals L’ and E are defined by the 
duality (4.4): 

A’(L*A,)(a @ b) = L*A,(ab) = L*A,(a)L*;(b), 

E’(L*tA,) ZE L*;(z), 

K’(L*A,)(a) = L*+(a)) 

so that 

(4.10) 

(4.11) 

(4.12) 

A’(L*$) = L*; @L*;, (4.13) 

E’(L*;) = s;, (4.14) 

K’(L*A,) = [(L*)-‘]AB = PAL*;&. (4.15) 

From (4.15) we have that K’ is an inner operation in the algebra generated by the func- 
tionals L*$ and s; it is then easy to see that these elements generate a Hopf algebra, the 
Hopf algebra (i,,,(so(N + 2)) of regular functionals on the quantum group SO,,,(N + 2). 

Note 4.1. From the CLL relations K’(L*~)L*F = L*~K’(L*F) = 8;~ we have, using 
upper-lower triangularity of L*: 

+A +A 
L*;K’(L*;) = K’(L A)L A = E. i.e. L+A 

AL 
+A’ _ L+A’ L+A 

A’ - A’ A = E. 

(4.16) 

As a consequence det L’ = L’“,L”, L’: . . L’%L*t = E. In the B, case we also have 
L hn2 

112 = E. 

Note 4.2. The RLL relations imply that the subalgebra U” generated by the elements L*t 

and E is commutative (use upper triangularity of R). Moreover, from (4.13) the invertible 
elements L*; are also group like, and we conclude that U” is the group Hopf algebra of the 
abelian group generated by L*t and E. In the classical limit U” is a maximal commutative 
subgroup of SO(N + 2). 

Note 4.3. When qAB = Y, the multiparametric R-matrix reduces to the uniparametric R- 

matrix and we recover the standard uniparametric orthogonal quantum groups. Then the 
L* functionals satisfy the further relation 

VA, L+;L-$ = E, (4.17) 

indeed L+;L-t(a) = E( u as can be easily seen when a = TAB and generalized to any ) 

a E SO,,,(N + 2) using (4.4). In this case [l l] we can avoid to realize the Hopf algebra 
U,(so(N + 2)) as functionals on SO,(N + 2) and we can define it abstractly as the Hopf 
algebra generated by the symbols L* and the unit E modulo relations (4.5)-(4.8), and (4.17). 

As discussed in [ 1 l] in the uniparametric case, the Hopf algebra U, (so(N + 2)) of regular 
functionals is a Hopf subalgebra of the orthogonal Drinfeld-Jimbo universal enveloping 
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algebra Uh, where r = eh. In the general multiparametric case, relation (4.17) does not 
hold any more. Here we discuss the generalization of (4.17) and the relation between 
U,., (so(N + 2)) and the multiparametric orthogonal Drinfeld-Jimbo universal enveloping 

algebra U, (3). This latter is the quasitriangular Hopf algebra UIF) = (Uh , ACT), S, RcF)) 
paired to the multiparametric orthogonal q-group SO,,,(N + 2). It is obtained from Ulz = 

(Uh, A, S, R) via a twist [14]. UL3” has the same algebra structure of Ul, (and the same 
antipode S), while the coproduct Ac3) and the universal element RC3) belonging to (a 
completion of) Uh @ Uh are determined by the twisting element Lr= that belongs to (a 
completion of) a maximal commutative subalgebra of Uh @ Uh. we have 

v4 E Ul,, Ac3”(+) = FA(@3-‘, 
R(F) = _T2,R.e, 7e(T @a T) = I?,,,. 

(4.18) 

The element F satisfies (Ac3) 18 id)F = Fr3.&3, (id 63 Ac3))3 = F13312, F1;2&1 = 
1, .?=12Fl3F23 = &3Fl3Fl;2, (E @ id)F = (id 63 E)F = E, (s @ id)F = (id @ s)F = 
F’-‘, .(id @ S)F = .(S @ id)F = .(id @ id)F = E; we explicitly have 

F(TAB @ TCD) = FACen. (4.19) 

where F AC BD is the diagonal matrix 

F=diag(E,E ,..., E). (4.20) 

It is easy to see that the definition of the L* functionals given in the beginning of this 
section is equivalent to the following one: L+;(a) = RC3)(a @ TAB) and L-$(a) = 

RC3)-‘(TAB @a). From (A(‘) @I id)R = RtjR23, (id @ Ac3))R = R13Rl2, we have 
Ac3)(L*A,) = L*: @ L*; and therefore AcF) = A’ on U,.,(so(N + 2)). From (id 63 
S)(R) = (S @ id)(R) = R-’ it is also easy to see that S = K’ on U,,,(so(N + 2)) and 
we conclude that the algebra of regular functionals U,,,(so(N + 2)) is a realization (in 

terms of functionals on SO,,,(N + 2)) of a Hopf subalgebra of 17:~“ with Y = eh. The 

generalization of (4.17) lies in UL3” and not in V,,,(so(N + 2)), and it is given by 

VA, L+lL-$ = fi(rAA)fi, where.@ = fi @ f’. (4.21) 

This relation holds with L* considered as abstract symbols. It can easily be checked when 
L* are realized as functionals: indeed L+A ALPt(a) = F4(TAA @ a) as can be seen when 
a = TAB [use F2(TAA 8 b) = .F(TAA @ bl)F(TAA @ b2)] and generalized to any a E 
SO,.,(N + 2) using F(TAA ~3 ab) = _F(TAA 69 a).F(TAA 13 b). 

In order to characterize the relation between the Hopf algebra of regular functionals 
U,.,(so(N +2)) and UL3’ , following [ 111, we extend the group Hopf algebra V” described 

in Note 4.2 to fro by means of the elements 2 lhAA = In L*t. Otherwise stated this means 

that in U” we can write L*i = exp(l*AA) where l’A~ E fi’. (Explicitly l*A~(TCD) = 

* In the classical limit I** A are the tangent vectors to a maximal commutative subgroup of SO(N + 2). 
They generate a Cartan subalgebra of the Lie algebra so(N + 2). 
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IIl(R*AC AC)~;,~*~A([) = O,l*‘~(ab) = f*A~(~)~(b)+~(a)l*A~(6)and~‘(l*AA) = 
-/+A A .) It then follows that F belongs to (a completion of) fiu @ fro. The corresponding 
extension fiq,,(so(N + 2)) of lJ,,,(so(N + 2)), defined as the Hopf algebra generated by 
the symbols L* and l* modulo relations (4.5)-(4.8) and (4.21), is isomorphic, when P = e”, 
to uL3’: l&,(.so(N + 2)) Z U;? This relation holds because it is the twisted version of 
the known uniparametric analog fir (so(N + 2)) 2 r/l, [ 1 1.101. 

The elements L* (or (L*: - 6is)/(r -r-l)) may be seen as the quantum analog of the 
tangent vectors; then the RL L relations are the quantum analog of the Lie algebra relations, 
and we can use the orthogonal CL L conditions to reduce the number of the L’ generators 
to (N + 2)(N + 1)/2, i.e. the dimension of the classical group manifold. 

This we proceed to do; we next study the RL* L* commutation relations restricted to 
these (N + 2) (N + I)/2 generators and find a set of ordered monomials in the reduced L* 
that linearly span all ir,,,(.ro(N + 2)). 

We first observe that the commutative subalgebra Go is generated by (N + 2)/2 elements 
(N even, N = 2n) or (N + 1)/2 elements (N odd, N = 2n + I), for example l-“, , 
I-‘,. . . . , IF,, For the off-diagonal L* elements, we can choose as free indices (C. D) = 
(c, o) in relation (4.8), and using L-: L-“,, = E, we find 

L-y, = -(&)-k&L-;. L-‘LL-y (4.22) 

If we choose (C. D) = (o. o) we obtain 

L-‘, = -(r-2C& + c,.)-‘c,& L-‘;L-‘, . (4.23) 

Similar results hold for L+> and L+“,. Iterating this procedure, from C(,h L-t. L-: = CdI.& 
we find that L-7 (with i = 2, . . . , N - 1) and L-y are functionally dependent on L-‘, 
and L-%. Similarly for L+‘. and L+’ N. The final result is that the elements L-5 with 
J < a < J’ and L+“J with j’ < a < J - whose number in both f cases is N(N + 2)/4 
for N even and (N + 1)*/4 for N odd-and the elements I-“,, 1-‘t, . , 1P,, generate all 
eqq.r(~~(N + 2)). The total number of generators is therefore (N + 2)(N + 1)/2. 

Notice that in this derivation we have not used the R L L relations (i.e. the quantum analog 
of the Lie algebra relations) to further reduce the number of generators. We therefore expect 
that, as in the classical case, monomials in the (N +2) (N + 1)/2 generators can be ordered (in 
any arbitrary way). We begin by proving this for polynomials in L+t, L+“J with J’ < (Y < J, 

and for polynomials in L-AA, L-“J with J < c1 < J’ . 

Lemma 4.1. Consider the RL’L’ commutation relations 

RAB EF 
LiF ztE +A &B EF 

DL C =L EL FR CD. (4.24) 

For C # D they close, respectively, on the subset of the L+“J with J’ K cx 5 J and 
on the subset c)f the L-“J with J 5 (Y c J’. For C = D they are equivalent to the q-‘-plane 
commutation relations 

[PA(J’ - J + l)]aBy~L*~L*~ = 0. (4.25) 
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where PA (J’ - J + 1) is the antisymmetrizer in dimension J - J’ + 1 (compare with (2.9)) 
In particulur 

Pj”b&L-;L-; = 0 (4.26) 

orequivalently [(PA)~,~,,~_, ]Ob,d L-‘iL-< = Owhichcoincide,forr -+ r-’ andq --f q-‘, 
with the N-dimensional quuntum orthogonal plane relations (3.16). 

Proo$ The proof is a straightforward calculation based on (2.15) and on upper or lower 
triangularity of the R-matrix and of the L* functionals. ??

Lemma 4.2. U,,,(so(N)) is a Hopf subalgebra of lJ,.,(so(N + 2)). 

Proc$ Choosing SO,,,(N) indices as free indices in (4.24) and using upper or lower 
triangularity of the L* matrices, and (2.7) or (2.20), we find that only SO,,,(N) in- 
dices appear in (4.24); similarly for relations (4.6)-(4.8), and for the costructures 
(4.13)-(4.15). 0 

Now we observe that in virtue of the R L+L+ relations the L+ elements can be ordered; 
similarly we can order the L- using the RL-L- relations. This statement can be proved 
by induction using that U,,,(so(N)) is a subalgebra of Uq,,(so(N + 2)), and splitting 
the SO,.,(N + 2) index in the usual way (some of the resulting formulas are given in 
(5.9)-(5.12)). 

It is then straightforward to prove that the elements L+*J with 1’ < (Y 5 J can be 

ordered; indeed we can always order the L+“J LfbK with J’ < a! 5 J, K’ < ,B 5 K and 
J # K since their commutation relations are a closed subset of (4.24) (see Lemma 4.1). 
Then there is no difficulty in ordering substrings composed by L+“J and L+T elements 
because (4.25) are q-‘-plane commutation relations, that allow for any ordering of the 
quantum plane coordinates [ 111. More in general the L+l and L+“J with J’ < (II < J can 
be ordered because of L+$ L+: = (q,, /q,,) LfF Lft. Similarly we can order the L-t 
and L-0; with J < a < J’. It is now easy to prove the following 

Theorem 4.1. A set of elements spanning i?<,.,(so(N + 2)) is given by the ordered 
monomials 

Mon(L+T: J’ < 01 < J) (l-oO)“~ (l-‘~)~’ (l-“,I)PflMon(L-~; J < c-w < J’). 

(4.27) 

where pO, pl, . . , pn E W U {0}, n = N/2 (N even), n = (N - 1)/2 (N odd) and 
Mon(L+T; J’ =z a < J), [Mon(L-T; J < a! < J’)] is a monomiul in the off-diagonal 
elements L+“J with J’ < (II < J [L-‘; with J < cx < J’] where an ordering has been 
chosen. 

Note 4.4 (Conjecture). The above monomials are linearly independent and therefore form 
a basis of fiq.,(so(N + 2)). 
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5. Universal enveloping algebra lJ,,,(iso(N)) 

Consider a generic functional f E U,,,(so(N + 2)). It is well defined on the quotient 
ISO,,, = SO,,,(N +2)/H if and only if f(H) = 0. It is easy to see that the set H’ of 
all these functionals is a subalgebra of U,,, (so( N + 2)): if f(H) = 0 and g(H) = 0 then 
fg(H) = 0 because A(H) g H @ S,,,(N + 2) + S,,,(N + 2) @ H. Moreover H’ is a 
Hopf subalgebra of lJ,,,(so(N + 2)) since H is a Hopf ideal [19]. In agreement with these 
observations we will find the Hopf algebra U,,, (iso( (dually paired to ZSO,,, (N)) as a 
subalgebra of U,,,(so(N + 2)) vanishing on the ideal H. 

Let 

IU E [L-A& Lfab, L+” 0, Lf’ ., ~1 C u,.,bW + 2)) (5.1) 

be the subalgebra of U,,,(so(N + 2)) generated by Leak, Lfab, L+OO, L+*,, E. 

Note 5.1. These are all and only the functionals annihilating the generators of H: T’, , T*b 
and T’, The remaining U,,,(so(N + 2)) generators L+“t, , L+‘. , Lfo. do not annihilate 
the generators of H and are not included in (5.1). 

We now proceed to study this algebra I U. We will show that it is a Hopf algebra and that 
I U C HI; we will give an R-matrix formulation, and prove that IU is a free U,,, (so(N))- 
module. This is the analog of ISO,,, (N) being a free SOq,,(N)-module. We then show 
that I U is dually paired with ISO,,, (N). These results lead to the conclusion that I U is the 
universal enveloping algebra of ISO,,, (N). 

Theorem 5.1. I U is a Hopf subalgebra of U,,, (so(N + 2)). 

ProoJ I U is by definition a subalgebra. The sub-coalgebra property A’( IU) C I U @ I U 
follows immediately from the upper triangularity of L+A B : 

A’(L+“/,) = Lfac @ Lfcb, A’(L+OO) = Lfoo @L+‘,, 

A’(L+*.) = L+*. @L+‘., 
(5.2) 

and the compatibility of A’ with the product. We conclude that Ill is a Hopf-subalgebra 
because K’(IU) 5 IU as is easily seen using (4.15) and antimultiplicativity of K’. 0 

We may wonder whether the RLL and CLL relations of U,,,(so(N + 2)) close in 
IU. In this case IU will be given by all and only the polynomials in the functionals 
L-AB, L+at), L+OO, L+‘., E. This check is done by writing explicitly all q-commutations 
between the generators of IU: they do not involve the functionals L+“h, Lfa., L+‘. . 
Moreover one can also write them in a compact form using a new R-matrix ‘KY12 = 
f?z(tr), where Cc+ is defined below. Similarly the orthogonality conditions (4.7) and 
(4.8) do not relate elements of IU with elements not belonging to IU. We therefore 
conclude: 
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Theorem 5.2. The Hopf algebra I U is generated by the unit E and the matrix entries 

L-=(L-An), c+= 0 

C 

L+OO 0 0 
L+ah 0 (5.3) 

0 0 1 Lf.. ’ 

these functionals satisfy the q-commutation relations: 

R&+&, = L+,.L’2R,2 or equivalently Rt2C+2C+t = C+tC+2Rt2, 

(5.4) 

R12L;L; = L;L;R12, (5.5) 

R,2C+2L; = L,C+*R,2 ) (5.6) 

where R12 E &(tl), i.e. RabCd = RubCd, RAB~u = RAB~u and otherwise RABc~ = 

0, 
and the orthogonality conditions: 

CAB&~+DA = cDce, CABC 
G&A 

D = CDCE, (5.7) 

CABL-C,L-D, = CD%, CA&“CL-% = CDC&. (5.8) 

The costructures are the ones given in (4.13)-(4.15) with L f replaced by C+. 

Note 5.2. We can consider the extension I^u c Ij,.,(so(N + 2)) obtained by including 

the elements liar (1 fAA = lnL*A A, see Section 4). Then Z^U is generated by the symbols 

L-t, C+AB, l*A A modulo the relations (5.4)-(5.8) and (4.21) ((4.17) in the uniparametric 
case). Equivalently, from (4.22) and (4.23) we have that Z?J is generated by fiq,‘(so(N)), 
the N elements L-t (satisfying the quantum plane relations) and the dilatation l-O,. All 
the relations are then given by those between the generators of fiq,,(so(N)) - listed in 
(4.5)-(4.8) (4.21) with lower case indices - and by the following ones: 

L-0,L-t = q,‘L-a,L_“,, 

PA”bf,L-“,L-{ = 0, 

L-“,L+t” qbo L+;L-o 
b- 

qdo O’ 

L-u, L+b d= $(Ri)b’~,~Li;L-.[, 
0 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

where R’ is defined in (4.3). The number of generators is N(N - 1)/2 + N + 1. 

Note 5.3. When qao = r Va, then L-“, = L+t, L-t = L+“, and, in complete analogy to 
(3.24) IU is generated by U,,,(so(N)), Lpa,, L-: and L-t = (L-t)-‘. With abuse of 
notations we will consider ZU generated by these elements also for arbitrary values of the 
parameters qao; this is what actually happens in I-U. 
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Note 5.4. From the second equation in (5.4) applied to t we obtain the quantum Yang- 
Baxter equation for the matrix R. 

Following Note 3.3, using (5.9), (5.10) (quantum plane relations) and then (5.1 1) and 
(5.12) agenericelement oflU canbe writtenas ~‘a; wherea; E lJ,.f(.ro(N)) and vi are the 
ordered monomials: ni = (K”,)‘- (L-‘,)‘I . (L-‘!)jN with i, E & it. . . . , iN E k/ U (0). 
Therefore I U is a right Uq.,(so(N))-module generated by the ordered monomials 17’. We 
now show that as in the classical case the expressions n’ai are unique: q’ai = 0 =+ ai = 
0 Vi, i.e. that IU is a free right Uq,,(so(N))-module. To prove this assertion we show 
that, at least when quO = r Va, IU is a bicovariant bimodule over U,,,(so(N)). Since any 
bicovariant bimodule is free ’ [20] we then deduce that, as a right module, I U is freely 
generated by the n’. 

Theorem 5.3. Consider IU (with the parumeter restriction qaO = r Vu) us the right 
U~.r(so(N))-module I = ( n’ui} (ai E CJq,,(so(N))) generated by the ordered mono- 
mials n’ = (I-0 )i-(L-1 )‘I . (L-N)‘” with i, E Z, il, . . iN E W U {0) . 
(a) r is a bimodule with the lefl modale structure trivially inheritedfrom the ulgebru I U. 
(b) r is u right covariant bimodule with right coaction 8~ : r -+ r ~3 U,,, (so(N)) defined 

by 

&(n’) = n’ @&, &(U$b) = A’(u)dR(n’)A’(b). (5.13) 

(c) r is a left covariant bimodule with left coaction 8~ : r -+ Uq.,(so(N)) @ I- defined 

by 

6L(tT”,) = E @ I-“,, sL(L-g = L-“h @ L-h,. (5.14) 

Sl&L-“L-t.. I-y,b) = A’(u)~L(L-;)~&-~). SL(L-:)A’(b), (5.15) 

where cz = (0, a), B = (0. b), y = (0, c). 
(d) r is a bicovariunt bimodule 

(id @ 8R)8L = (8~ @ id)& . 

(e) r is freely generuted by the right invariant elements 7’. 

(5.16) 

Proof (a) Immediate since, from Note 5.3 and Lemma 4.2, U,,,((so(N)) is a subalgebra 
of IU. 

(b) Consider the linear map 6, : I U + I U @ I U defined by 

S,(_K?) = L-u, @&, S,(a) = A’(u) Vu E U,,,(so(N)) (5.17) 

and extended multiplicatively on all I U. This map is obviously well defined on U,., (so(N)) 
because it coincides with the coproduct on U,,, (so(N)) (U,,, (so(N)) is a Hopf subalgebra 

3 The results of [20] apply to a general Hopf algebra with invertible antipode. This can be shown by checking 
that all the formulae used to derive the results of [20] -they are collected in the appendix of [20] -hold also 
in the general case of a Hopf algebra with invertible antipode. 
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of I U); it is also well defined on all IU since it is multiplicative and compatible with 
(5.9)-(5.12). We check for example (5.12) with qno = r Vu 

This shows that 8~ : r + r @ I/,,,(.sn(N)) is well defined since r is IU seen as a 
U,,,. (so( N))-bimodule and the actions of 6, and 6~ on r coincide. 

It is now immediate to show that r is a right covariant bimodule, i.e. 

Vn’ai E r: (8~ 8 id)&(n’a;) = (id 18 A’)&(q’a;), 
(id @ ~‘)&(n’a;) = viai. 

(5.18) 

(c) We proceed as in the previous case, defining the linear map 61 : I U -+ I U @ I U, 

J,(L-‘;) = L-“h 8 L-h, Sl(L_“,) = L-q, @? L-“,, 

61(a) = A’(a) Vu E U,,,(so(N)), 
(5.19) 

which is extended multiplicatively on all ZU. As was the case for &., it is well defined on 
U,,, (so(N)) and it is also well defined on all I U because it is multiplicative and compatible 
with (5.9)-(5.12). For example, the compatibility of 61 with relation (5.10) holds because 
P,f’e,fLp,fdL-:. = Lp~,.Lp~P~‘~.~ (aconsequenceof (k)*‘LtLf = LfLf(k)*’ andthe 

fact that PA is a polynomial in i? and i-‘, see (2.9)). This is in complete analogy with the 
compatibility of the left coaction 6 (x”) = Toh @.d’ with the q-plane commutation relations. 

To prove that r is a left covariant bimodule, notice that 

(E @ id)6t(L-‘k) = L-:. 
(A’ @ id)&(L-‘k) = L-> @ L-t @ L-h = (id @ &)61(L-‘i), 

(5.20) 

and similarly for L-:. Now since &(a) = A’(u) if a E U,.(.so(N)), and since St is multi- 
plicative, we have on all I U 

(E &3 id)61 = id, (A’ @id)& = (id @ &)St. 

(d) The bicovariance condition (5.16) follows directly from 

(5.21) 

(id @ S,)Sl(L-a,) = L-t @ L-h, @E = (81 @ id)&(L-‘k), (5.22) 

(id @ 6,.)61(L-“,) = E @ L-“, 8 E = (61 @ id)&(L-“,). (5.23) 

(e) We now recall that a bicovariant bimodule is always freely generated by a basis of 

L-inv> the space of right invariant elements of r [20]. We also know that the ni are right 
invariant. Now, since they generate r, they linearly span &,, and since they are linearly 
independent, they form a basis of r,,,. We conclude that r is freely generated by the vi: 
$a; =Oju; =ovi. 0 

It is now easy to prove that the n’ freely generate I U also without the restriction qao = 

r Vu. (Hint: recall thedefinitionof Lp as L-$(C) = R(F)p’(TAB @c) VC E SO,,,(N+2), 
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and use .F E fro @ fro to show that L-t differs from the uniparametric L-t (obtained 
with R instead of RcF)) by a factor belonging to co and invertible.) 

5.1. Duality lJ,,,(iso(N)) * ISO,,,- 

We now show that I U is dually paired to SO,,,(N + 2). This is the fundamental step 
allowing to interpret I U as the algebra of regular functionals on ISO,,, (N). 

Theorem 5.4. IU unnihi~ates H, i.e. IU C H’. 

Proo$ Let C and I be generic generators of I U and H, respectively. As discussed in Note 
5.1, C(7) = 0. A generic element of the ideal is given by alh where sum of polyno- 
mials is understood; we have (using Sweedler’s notation for the coproduct): C(a7b) = 
ccl)(a)C(2)(I)C(3)(b) = 0 because &z)(7) = 0. Indeed C(2) is still a generator of 
ZU since IU is a sub-coalgebra of U,,,(so(N + 2)). Thus C(H) = 0. Recalling that 
a product of functionals annihilating H still annihilates the co-ideal H, we also have 
IL’(H) = 0. 0 

In virtue of Theorem 5.4 the following bracket is well defined: 

IU ~3 ISO,,, + @ 

(’ ) : (a’, P(a)) = a’(a) Vu’ E ZU, Vu E SO,,,(N + 2), 
(5.24) 

where P : SO,,,(N + 2) + SO,%,(N + 2)/H = ISO,,, is the canonical projection, 
which is surjective. The bracket is well defined because two generic counterimages of P(a) 
differ by an addend belonging to H. 

Note that when we use the bracket ( , ), a’ is seen as an element of ZU, while in the 
expression a’(a), a’ is seen as an element of U,,,(so(N + 2)) (vanishing on H). 

Theorem 5.5. The bracket (5.24) defines a pairing between I U and ISO,.,( Vu’, b’ E 
IU, VP(a). P(b) E ISO,,, 

(a’b’, P(a)) = (a’ 8 b’, A(P(a))), 

(a’, P(a)P(b)) = (A’(d), P(a) C3 P(b)), 

(K’(d). P(a)) = (a’, K(P(Q)))> 

(I, P(a)) = &(P(Q)), (a’, P(I)) = E’(d). 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

ProoJ: The proof is easy since ZU is a Hopf subalgebra of U,,, (so(N + 2)) and P is com- 
patible with the structures and costructures of SO,,, (N + 2) and ZSO,,, (N). Indeed we have 

(a’, P(a)P(b)) = (a’, P(ab)) = a’(ab) 

= A’(a’)(a @b) = (A’(d), P(a) @ P(b)), 

(a’b’, P(a)) = a’b’(a) = (a’ @ b’)ANf2(a) 

= (a’ 8 b’, (P @ P)A,v+z(a)) = (a’ 8 b’, A(P(a))). 



II Aschieri, L. Castelluni/Journal of Geometry and Physics 26 (1998) 247-271 

(K’(U’). p(U)) = K’@‘)(U) = d(KN+2(U)) 

= (a’, P(KN+Z(a))) = (a’, K(P(a))). 0 

265 

We now recall that IlJ and ISO,.,( besides being dually paired, are free right mod- 
ules, respectively, on U,,,(so(N)) and on SO,,r(N). They are freely generated by the two 
isomorphic sets of the ordered monomials in L-0,. L-‘L and u, x”, respectively (cf. the 
commutations (5.9) (5.10) and (3.20), (3.16)). We can then call ZU the universal enveloping 
algebra of ISO,., (N) 

U,,,(iso(N)) = IU (5.29) 

in the same way U,. (so( N)) is the universal enveloping algebra of SO,(N) [ 111. 

Note 5.5. Given a *-structure on ISO,,,( the duality ISO,,, * U,,,(iso(N)) in- 
duces a *-structure on U,,,(iso(N)). If in particular the *-conjugation on ISO,,, is 
found by projecting a *-conjugation on SO,,,(N + 2), then the induced * on U,,,.(iso(N)) 
is simply the restriction to U,.,(iso(N)) of the * on U,,,(so(N + 2)). This is the case for 
the *-structures that lead to the real forms ZSO,,,(N. IL!) and ZSOq.,(n + 1, n - 1) and in 
particular to the quantum Poincare group [8,7,4]. 

6. Projected differential calculus 

In the previous sections we have found the inhomogeneous quantum group ISO,,, 
by means of a projection from SO,,,(N + 2). Dually, its universal enveloping algebra is a 
given Hopf subalgebra of Il,,,(so(N + 2)). Using the same techniques differential calculi 
on ISO,,f(N) can be found. 

6.1. Projecting Woronowicz ideal 

Following Woronowicz [20], we recall that a bicovariant differential calculus over a 
generic Hopf algebra A is determined by a right ideal R of A. This ideal has to be included 
in ker E (i.e. its elements have vanishing counit) and must be ad-invariant, that is, adA (r) E 
R@AVr E R whereudA(r) isdefinedbyudA(u) = u~~31~,4(u~)u3Vu E A;theindex A de- 
notes the costructures in A and we have used Sweedler’s notation for the coproduct. For any 
such R one can construct a bicovariant differential calculus. In the following we show that, 
given a quotient Hopf algebra A/H (with canonical projection P : A -+ A/H = P(A)), 
P(R) is a right ad-invariant ideal in P(A); therefore it defines a bicovariant differential 
calculus at the projected level. Moreover the space of tangent vectors on P(A) is easily 
found as a subspace of the tangent vectors on A. The explicit construction of the exterior 
differential d, and of the bicovariant bimodule r of one-forms is then straightforward. 

Theorem 6.1. If R E ker E is a right ad-invariant ideal of A then P(R) is included in ker 
E and is a right ad-invariant ideal of P(A). 
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Proojf The only nontrivial part is ad-invariance. From ads = r2 @ KA(r])rj E R @ A 
Vr E R, applying P @ P we obtain P(r2) @ P(KA(rI))P(Ys) E P(R) @ P(A) VP(r) E 
P(R). Now 

P(r2) 63 P(KA(ri))P(r3) = P(r2) 8 K(P(rl))P(r3) 

= P(r)2 @ K(P(r)l)P(r)3 = ad(P(r)), (6.1) 

where we have used compatibility of the projection with the costructures of A and P(A); 
K denotes the antipode in P(A) and, after the second equality, the coproduct of P(A) is 
understood. Relation (6.1) gives the ad-invariance of P(R): VP(r) E P(R), ad(P(r)) E 

P(R) 8 P(A). 0 

The space of tangent vectors on a quantum group P(A) is given by [20] 

T = (X : P(A) + @ ]Xlinear functionals,i(I) = 0 and jj(P(R)) = 0). (6.2) 

Remark 6.1. The vector space T defined in (6.2) is given by all and only those functionals 
X corresponding to elements x of the tangent space TA on A that annihilate the Hopf 
ideal H. Indeed if x annihilates H, then 2 defined by X : A/H --+ @ with X (P(a)) E 
x(a), VP(a) E P(A), is a well-defined functional on P(A) (see (5.24)). From x(R) = 0 
we obtain X (P(R)) = 0, i.e. X E T. Vice versa a functional X E T is trivially extended to 
a functional x E TA. 

Recall [20,17] that the deformed Lie bracket is given by [xi, xj](a) = (x; @ Xj)adA (a) 

where xi, xj are functionals on A. For the “projected” q-Lie algebra we have: 

Theorem 6.2. The q-Lie algebru on P(A) is a closed subset ofthe q-Lie algebru on A. 

Proof Let xi(H) = xj (H) = 0. We have, using (6.1) in the second equality 

[xi, ijl(P(a)) = (xi @ jj)ad(P(a)) = ii (8 ij<p @ P)adA(a) 

= (xi @ xj)adA(a) = [Xi, Xjl(a)t 

in particular [xi, jj](P(R)) = [xi, Xj](R) = 0 and this proves the theorem. 0 

In virtue of Theorem 6.2 the following corollary is easily proved. 

Corollary 6.1. Consider the structure constants Cijk defined by [xi, xj] = @ijk xk, where 
(xi ) will henceforth denote a basis of TA containing the maximum number of tangent vectors 
vanishing on H. The subset of the structure constants corresponding to the functionals xi 
that annihilate H is the set of all the structure constants of P(A). 

The exterior differential related to this projected calculus is given by 

Vu E P(A), da = (Xi *a)&‘, (6.3 
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where Xi * u = (id @ xi)Aa, and W’ are the one-forms dual to the tangent vectors Xi 
[20,5]; they freely generate the left module of one-forms r = {ai W’ , a; E P(A)}. The right 
module structure is given by the ,f’j functionals, obtained applying the coproduct A’ to the 

Xi 

A’ii = Xj @ f’i + E @ Xi Z+ W’U = (fij *u)Wj . (6.4) 

The space r of one-forms on P(A) can be studied by projecting the one-forms on A into 
one-forms on P(A). For this we introduce the projection P acting on fA (the space of 
one-forms on A) as follows: 

P:rA’r (6.5) 

LZif3' H P(Ui)ti’. (6.6) 

where W’ = 0 if xi (H) # 0. We now show that P is a bicovariant bimodule epimorphism and 
that it is compatible with the differential calculi. Trivially P is a left module epimorphism 
because rA and r are free left modules generated respectively by the one-forms {w’} and 
{W’}. It is also easy to see (use (6.4)) that Vp E rA, Vu E A, P(p) = P(p)P(u), which 
shows that P is a bimodule epimorphism. 

To prove that P is compatible with the exterior differentials dA on A and d on P(A), 
consider the generic one-form a dAb = a(xi * b)w’ (see (6.3)): we have P(ud,b) = 
P(u)P(xi * b)w’ = P(a)[ji * P(b)]G’ = P(a) dP(b). 

The exterior differential d induces the comodule structure on r by the definitions: 

AL(a db) = A(u)(id @ d)A(b). 
Vu, b E P(A) (6.7) 

AR(U db) = A(u)(d @ id)A(b). 

Finally P is a comodule homomorphism: d~(P(p)) = (P @ P)ALA(~); a~(P(p)) = 
(P @ P)ARA(P), Vp E r~ where ALA (ARA) is the left (right) coaction of A. 

From ALAW’ = I @ wi and ARAW’ = wj @ Mj’, where Mj’ defines the adjoint repre- 
sentation on A, we obtain an explicit expression for AL and AR, 

ALWi =I@&‘, ARCI’ = GJ’ @ P(Mj') . (6.8) 

6.2. Application: ISO,,, (N) differential calculi 

We now apply the above discussion to the quantum groups A = SO,,,(N + 2) and 
P(A) = ISO,,,( The adjoint representation for SO,,,(N + 2) is given by 

M$c” = TA&v+z(TDB), (6.9) 

and the x functionals explicitly read 

(6.10) 
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see [ 131 and references therein (see also [3]). Decomposing the indices we find: 

1 
+ P]fcCCh + f.*chl’ 

r-r-l 

+p 1 f’” 
r_r-l ?? 0’ 

x’, = ~ 1 f.. 
r_r-l ’ 0’ 

l x= = ~ 
r-r-’ 

Lf.“. - &I, 
i i 

terms annihilating H 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

where using Theorem 5.4 and Note 5.1 we have indicated the terms that do and do not 
annihilate the Hopf ideal H. We see that only three of these functionals, namely x>, x j 
and xt, do vanish on H. The resulting bicovariant differential calculus contains dilatations 
and translations, but does not contain the tangent vectors of SO,,,(N), i.e. the functionals 
x$. The differential related to this calculus is given by 

Vu E ZSO,.,(N) da = (x’, *a)&’ + (x; * a)~.* + (x; * a)~.‘, (6.20) 

where w.~, w.* and w.” are the one-forms dual to the tangent vectors x>, K ‘, and xt 
[20,5] (with abuse of notation, we omit the bar over the elements of the projected calculus). 
The q-Lie algebra is explicitly given by 4 

x:x; - (q.!J*X:x: = 0, (6.2 1) 

x:.x: - re2 x:x:, = -r-Ix:,. (6.22) 

x’,x~ - rp4XtX’, = -(l + r2) 
r3 X',. (6.23) 

(6.24) 

A combination of the above relations yields 

_rN/* 1 

xj + hX:X: = A- -x’hcdbx;. 
r* + rN qd. 

(6.25) 

4 We thank A. Scarfone for the derivation of (6.24). 
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Notice the similar structure of Eqs. (3.23) (4.23) and (6.25). 
The bicovariant bimodule of one-forms is characterized by the functionals 
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f.“‘, Y .f.“*o. .f.“,) .f.aob, .f.-h? f.“. (6.26) 

that appear in the comultiplication of Xl, X’, and Xt [use upper (lower) triangularity of 
L’ (L-)], and by the elements 

~(M’B:) = P(T*.KN+z(@) = uP(Q’+2(Ts)) (6.27) 

that, according to (6.9) and (6.8) characterize the right coaction of ISO,,, (IV) on w.‘, 0.. 
and 0.‘. They explicitly read 

P(M’,,“) = I?, P(M’,,d) = 0, P(M;**) = 0, 

P(M’h,“) = w-~I=x’C,~, P(M;,;) = UK@,). P(M’bJ) = 0, 

P(M’,,“) = - 
1 

yN(yN/= + +‘/2+2) 
x’C&, P(Mtad) = UK@), P(bf;,‘) = 1. 

(6.28) 

Notice that only the couples of indices (oo), (ob) and (00) appear in (6.20)-(6.28): these are 
therefore the only indices involved in the projected differential calculus on ISO,.,( 

The functionals X$ cannot be good tangent vectors on ISO,., because of the func- 
tionals feoah appearing in (6.1 I): these do not annihilate H. We see however that lim,, 1 
(l/(r - r-l)) f.*(;v(n) = 0, Vu E SO,., (N + 2); for this reason we consider in the follow- 
ing the particular multiparametric deformations called “minimal deformations” (twistings), 
corresponding to Y = 1. 

As shown in [3] in the r + 1 limit the X functionals are given by 

xi = hl; [f,"", -El, x;r = 0, 

A>B. X$=limLfRA r+lk.B B’ A<B’ 

whereh zr -r-‘, and close on the q-Lie algebra 

BI CI 
_ qe,CzqcIB~qBzC,qCzB,X B2x c2 

= -qB,C&BdB2B&; X;? 
BI 

_ + ‘?C, BI qBzB, cB& X c; 

+~C~B~~B,C2CC’B’ X2* - qB2C,8:; X2, 
I 

(6.29) 

Not all of these functionals are linearly independent because 

B’ 
X A’ = -9AB X”,. (6.30) 

From (6.30) we see that a basis of tangent vectors on SO,,,=1 (N + 2) is given by 

IX”, with A + B > N + 1, A, B: 0 = o, 1,2, . . . , N, N + 1 = 0). (6.31) 
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They define a bicovariant differential calculus on SO,,,= 1 (N +2). The projected bicovariant 
calculus on ISO,,,= (N) is therefore characterized by the basis of tangent vectors 

- SEE] with a + b > N + 1, 

x: = !l, ; [f.“. - El, 

(6.32) 

indeed Theorem 5.4 assures that these functionals annihilate H, while from Note 5.1 it is 
not difficult to see that the remaining functionals x: = (l/h)f,‘“, do not vanish on H. 

The q-Lie algebra, in virtue of Theorem 6.2, is a q-Lie subalgebra of SO,.,=) (N + 2) . It 

follows that the x”,!,, xh’ hz q-commutations read as in Eq. (6.29) with lower case indices: 
they give the SO,,,=1 (N) q-Lie algebra. The remaining commutations are (see (6.29)): 

d2Xh2 - ~~b*c,qc*b~Xh2x~~!2 = E[cI)-12xcl , - $1 qcw, xc2 1 1 
(6.34) 

xc2 Xb2 - Eqc2bZ Xh? Xc? = 0, (6.35) 

x :!2 x : - x:x’;!, = 0, XC2 x = - x;xc2 = -XL.?, (6.36) 

where we have defined xa = x’, The exterior differential reads, Vu E ISO,,, (N) 

da = (x; * a)~&~ + (x; *a)&’ + (x= * a)Q:, a + b > N + 1. (6.37) 

where Q2,‘, R,‘, and 52.’ are the one-forms dual to the tangent vectors (6.32) and (6.33). 
Notice that the tangent vectors x% and Xb close on the q-Lie algebra (6.34), (6.35) and (6.29) 
with lower case indices. This suggests a reduction of the bicovariant calculus containing 
only the x $ and x \ tangent vectors. An explicit formulation, in agreement with [7], is given 
in [3]. 
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